Structural characterization of the EphA4-Ephrin-B2 complex reveals new features enabling Eph-ephrin binding promiscuity.
نویسندگان
چکیده
EphA and EphB receptors preferentially bind ephrin-A and ephrin-B ligands, respectively, but EphA4 is exceptional for its ability to bind all ephrins. Here, we report the crystal structure of the EphA4 ligand-binding domain in complex with ephrin-B2, which represents the first structure of an EphA-ephrin-B interclass complex. A loose fit of the ephrin-B2 G-H loop in the EphA4 ligand-binding channel is consistent with a relatively weak binding affinity. Additional surface contacts also exist between EphA4 residues Gln(12) and Glu(14) and ephrin-B2. Mutation of Gln(12) and Glu(14) does not cause significant structural changes in EphA4 or changes in its affinity for ephrin-A ligands. However, the EphA4 mutant has approximately 10-fold reduced affinity for ephrin-B ligands, indicating that the surface contacts are critical for interclass but not intraclass ephrin binding. Thus, EphA4 uses different strategies to bind ephrin-A or ephrin-B ligands and achieve binding promiscuity. NMR characterization also suggests that the contacts of Gln(12) and Glu(14) with ephrin-B2 induce dynamic changes throughout the whole EphA4 ligand-binding domain. Our findings shed light on the distinctive features that enable the remarkable ligand binding promiscuity of EphA4 and suggest that diverse strategies are needed to effectively disrupt different Eph-ephrin complexes.
منابع مشابه
Structural Plasticity of Eph-Receptor A4 Facilitates Cross-Class Ephrin Signaling
The EphA4 tyrosine kinase cell surface receptor regulates an array of physiological processes and is the only currently known class A Eph receptor that binds both A and B class ephrins with high affinity. We have solved the crystal structure of the EphA4 ligand binding domain alone and in complex with (1) ephrinB2 and (2) ephrinA2. This set of structures shows that EphA4 has significant conform...
متن کاملInsights into Eph receptor tyrosine kinase activation from crystal structures of the EphA4 ectodomain and its complex with ephrin-A5.
Eph receptor tyrosine kinases and their ephrin ligands mediate cell signaling during normal and oncogenic development. Eph signaling is initiated in a multistep process leading to the assembly of higher-order Eph/ephrin clusters that set off bidirectional signaling in interacting cells. Eph and ephrins are divided in two subclasses based on their abilities to bind and activate each other and on...
متن کاملAuditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice.
The Eph receptor tyrosine kinases and their membrane-anchored ligands, ephrins, are signaling proteins that act as axon guidance molecules during chick auditory brainstem development. We recently showed that Eph proteins also affect patterns of neural activation in the mammalian brainstem. However, functional deficits in the brainstems of mutant mice have not been assessed physiologically. The ...
متن کاملAuditory brainstem neural activation patterns are altered in EphA4- and ephrin-B2-deficient mice.
Auditory processing requires proper formation of tonotopically ordered projections. We have evaluated the role of an Eph receptor tyrosine kinase and an ephrin ligand in the development of these frequency maps. We demonstrated expression of EphA4 and ephrin-B2 in auditory nuclei and found expression gradients along the frequency axis in neonates. We tested the roles of EphA4 and ephrin-B2 in de...
متن کاملDistinctive Structure of the EphA3/Ephrin-A5 Complex Reveals a Dual Mode of Eph Receptor Interaction for Ephrin-A5
The Eph receptor tyrosine kinase/ephrin ligand system regulates a wide spectrum of physiological processes, while its dysregulation has been implicated in cancer progression. The human EphA3 receptor is widely upregulated in the tumor microenvironment and is highly expressed in some types of cancer cells. Furthermore, EphA3 is among the most highly mutated genes in lung cancer and it is also fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 1 شماره
صفحات -
تاریخ انتشار 2010